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A GENERAL LEAST SQUARES SOLUTION FOR‘SUCCESSIVE INTERVALS

Gertrude W. Diederich, Samuel J. Messick,
and Ledyard R Tucker

Abstract

A general least squares solution for successive intervals is presented,
along with iterative procedures for dbtaining stimulus scale values, dis-
criminal dispersions, and category boundaries. Because provisions for
welghting were incorporated into the derivation, the solution may be applied
without loss of rigor.to the typical experimental matrix of incomplete data,
i.e., to a gata matrix with missingentries, as well as to the rarely occur-
ring matrix of complete data. The use of weights also permits adjustments
for variations in the reliability of estimates obtained from the data. The
computational steps involved in the solution are enumerated, the amount of

labor required comparing favorably with other procedures. A quick, yet

‘accurate, graphical approximetion suggested by the least squares derivation

is also described.

praniagee L




i

ot TN RN I e T

e s e e

A GEﬁERAL LEAST SQUARES SOLUTION FOR SUCCESSIVE INTERVALS

Since Thurstone first developed the scaling method of successive
intervals, it has appeared insseveral'essentially identical forms under
various names, such as absolute scaling (15), equal discriminability
scaling (6), and graded dichotomies (1). The procedure was first pub-
lished as a psychological scaling method by Saffir (14), the basic
rationale having beern previously presented by Thurstone in his absolute

scaling of psychological tests (15, .18).
Experimental Procedures for Successive Intervals

The experimental procedure for the method of successive intervals
requires n stimull to be sorted 1nto ( k +1 ) categories on some .
attribute continuum. The categories are usually ranked so that a stimu-
lus placed in category g 1s Judged to have a higher psychological
scale value and, in some sense, "more of" the attribute in question
than a stimulus placed in category ( g - 1 ). Analogously to Cases I
and II of the Law of Comparative Judgment (17), the sorting procedure
may be repeated N times by the same person or performed once by each
of N different people.

This procedure yields a frequency distribution for each stimulus
over several of the categories on the attribute contlinuum, i.e., it
yields the number of times, fig , that the 1ith stimulus was placed
in the gth category. These frequencies provide the raw material for
the analytical procedure of successive intervals, which is an attempt
to account for the data by a single psychological scale. The bagic

consideration is whether or not these frequency distributions can be

simultaneously converted to a common distribution, allowing unequal
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means and variances, on the same base line. The means of the converted
distributions would then correspond to stimulus scgle values and the !
standard deviations to what Thurstone has called "discriminel disper-
sions" (16). Scale values for category boundaries are also obtained
from the method of successive intervals, thus permitting estimates of
the size of categories rather than assuming them to be equal as in ;

the method of equal-appearing intervals (19).
Solutions to the Scaling Problem

Successive intervals solutions for the E. stimulus ‘values have

been suggested by Saffir (14), Guilford (9), Mosier (i2), Bishop (2),

Attneave (1), Garner and Heke (6), Edwards (3), Gulliksen (10), and

' Rimoldi (13). Some of these articles alsd offer solutions for the
n discriminal dispersions and the k category boundaries. The
procedures vary in computational routine and with respect to certain

restricting assumptions,; but they are essentially equivalent. These

procedures involve obtaining the proportion, pig , of times a
stimulus 1 was placed in category g . The pig values are then
cumulated to give the proportion 6f times stimulus 1 was placed
?elow the gth category boundary, tg , and these cumulative pro-

portions are usually converted into normel deviate values, =z

ig °*
Various successive intervals solutions presented in the literature.
have used normsl curve transformations or other similar transforms-
tions such as the logistic. Any similar function giving a one-to-one

correspondence between Pig and zig could be used (see 10).
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The normal deviate value obtained from such a transformation may be

expressed .as follows:

2y =t (1)
g 8
i
where zig‘- the normsl deviate value corresponding to a cumulated proportion,
tg.= the upper boundary of the gth category,
m, = the scale value of stimulus i , and
8y = the discriminal dispersion for stimulus 1 .

The category boundary can then be expressed as

tg =m otz . (2)

This equation is what Torgerson calls a speclal case of the Law of

Categorical Judgment (20). Algebraic solutions for m , s ,and tg

can then be obtained from this relationshipzﬁr arbitrarily choosing one
of the 8y values as a unit and one of the mi values or their average
as an origin.

Gulliksen (10) derived an explicit least squares solution for m

1)
By and tg by minimizing the following error term:
n k
1 2
E== % £ (m +8,2, -t) , (3)
b2 1e] gl 1 i"ig g

whére b 1is an arbitrary scale factor.

t!**- e s
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The following restrictlons, which fix an origin and a unit, were at-

tached to the function to be minimized by Lagrange multipliers:

k
It =ka (¥)
-1 &

and
k
5 t° = k(a® + v?) , (5)
g=1 &

where k 1s the number of category boundaries, 1.e., one less than
the number of categories. These restrictions place the mean scale
value of the category boundaries, tg , at & and their standard

deviation at b .
A General least Squares Solution

This pesper is concerned with a general leasst squares solution
for successive intervals, which 1s an attempt to express the variables

mo, By s and tg in terms of each other, instead of solving for

them explicitly. Once -8uch relationships have been obtained, an

iterative procedure can be utilized to converge upon m.i s 8y s and

tg . In an attempt to obtain a least squares solution that would

apply equally well to data with either complete or incomplete over-

lap, a weighting system was incorporated into the derivation. Thus
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the "incomplete overlap"” situation could be easily handled without
loss of rigor by assigning weights of zero to the missing entries.
As it turned out, the present iterative solution also involves a com-
putational routine that is not excessively laborious.

The general strategy, then, of the present least squares deriva-
i tion is to solve implicitly for m,
] other and then to set up rules for iterating to convergence values.

Sy and tg in terms of each

The derivation proceeds as follows:

Let % represent an estimate of tg that would be obtained

ig
from stimulus i if mi and si were known:
£, =zm +s8,2 . (6)

let e g represent the error made by estimating tg in this fashion:

\

>

eig = tig" tg =m o+ sizig - tg . (7)

- Since the error term to be minimized must contain provisions for

weighting, let it be written as

n
EE-—;Z Zwee 5 ) (8)
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where wig is a weight that may be chosen in any fashion as long as the
following restriction is met:
p=20
For zig =4+ ® , i.e., when - s then wig = 0 and Wigzig = 0

An arbitrary origin, a , and unit,

specified by

k n
Zt Zwi = We, ’
p g=1 g 4 18
k n
B B, = W(a® + b°) ,
g=1 8 i 18

where W 1s the constant defined as

kn
W= ZZw

gl ig

b , for the t-scale may now be

(9)

(10)

Thus, the weighted mean scale value of the category boundaries is set at

a and their welghted standard deviation at b , as can be readily seen

if equations 9 and 10 are rewritten a8

k n
2(t_ -a)zIw, =0
g B y 18
and
k n
Z(t_ - a)2 R .
g & i 18

(11)

(12)




These restrictions generalize for the weighted case the definitions used
by Gulliksen in the unweighted case (see equations 4 and 5). Since the
t-scale is determined only within a linear transformation, a and b
may be set at any values desired, e.g., & convenlent possibility for the
origin, &a , might be zero and for the scale unit, b , which mustfbéﬁ‘

positive, might be unity.

Using two Lagrange multipliers 7y and 2N , the restrictions
setting origin and unit mey be included in the error term as follows:
1 B k k

4 n

2

Q== X Zw, (m +s,z, -t )" +2A2(Zt Zw, = Wa)
p° 1a1 g=1 8 1 1ie g g=1 & 1=1 18

k n
. zltg fwig - W(a® + v°)] . (13)
gﬂ

=2

Except for the weights, wig ; equation 13 is identical to the term

minimized by Gulliksen (see equations 3, 4, and 5). His solution, then, ”

e e .

is the speclal case of the present one in which all of the weights are

k n
equal to unity and Ewig =k and Zwig =n . Because of this restriction -
g 1

to unit weights, only data with complete overlap can be considered. Equa-

o S ey W\

tion 13 is also similar to the term minimized by Tucker (22) in developing
a least squares solution to the normal ogive model for categorical datsa,

which is formally equivalent to the successive intervals situation (see 21,

Sin geem . SuRININOE

Chapter 13), Tucker's solution, like the present one, involves weights
and 1s iterative, but instead of minimizing the sum of squared differences
between theoretical and estimated t-values, he minimized the sum of squared

differences between theoretical and observed z-values.

e SR
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The differentiation of Q with respect to each of the mi in turn

yields the n equations

M=

oQ 1
Sﬁ; = ’5

o+

. lwig(mi + 8425 - tg) (+1) (i=1...n) . (1%)

Expanding and setting the partisl derivative equal to zero,

K
m, Sw, + 8, B - Iw, % =0 : (13)
g

The solution for m can now be written as

i
k k
Ewigtg - s. Zwig ig
m =& — & . (16)
Iw
i
g g

Q is now differentiated with respect to each s, 1in turn to yleld

i
the n equations
k
1 9q 1
5 BEI Z zw (m + 84240 tg)(zig) (i=1...n) . (17)

Expanding and setting the partial derivative equal to zero,

k k5 k
m, Zwigzig s, ?’igzig - é'wigtgzig =0 . (18)

Substituting the value of m, from equation 16 we have

" k ‘ »
(gwigzig)(mig g) 8 (Ewig ig) ko, 0k
X T Tk By Diiglig = DigP1g =0 ¢ (19)
g g
2w, By
g € g
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Solving for 8;

k k k k
v, t oz, WZw, ) - (Zw v, b
(D) b2 ) (B ) = (B 2y ) (D 8,) }
g = B g g g (20) o
i k5 K k . ’ g
- {
(‘Ewiszis)(?'ie) (gwigzig) .

For the purpose of parenthetical comment upon the form of 8 :

equation 20 can be rewritten in the following manner:

si = k E) (21)

where

and

It is apparent from the form of equation 21 that s, 1s the slope of a

i
regression line. It 1s the coefficient for the regression of t on 2z
This immediately suggests &' graphical representation of the data, which

will be presented in a later section. It is also interesting to note that
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Tucker's solution (22), which minimized the sum of squared errors in the

2z direction instead of in the t dlrection, involves the other regres-

sion--the regression of z on %

Utilizing the value of s, obtalned in equation 20, it is also

i
possible to rewrite the formuls for mi in terms of tg as follows:
k k 5 k k
w, t W, Z -(Zw, t z w, z
( ig g)( ig ig) ( ig g ig)( ig ig)
m, =& £ & & : (22)
i k 5 k k o

As will be seen in a later section, this is the form of m, which it will

1
be convenient to use in computational routines.

Differentiating @ with respect to each tg in turn yilelds the k

equations
_J__- aQ 1 n n n
=3 =% Zwig(mi 842y, tg)(-l) + A zwig - 7tg zwig
g b i i 1
(g=1...k) - (23)

Expanding and setting the partial derivative equal to zero,

| n n Ex n 5 n
tg zwig - Ewig(mi + sizig) +b zwig -b 7tg Zwig =0 . (24)
i i i i
Define \
n
fwig(mi * 82y,
Vg 8 . (25)

l—'-[;?'d

ig
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n
Rearranging the terms of equation 24, dividing both sides by Ewig , and
i

substituting the definition of vg from equation 25, we may write
i

(1 - 1027)1:@3 =V - Bb2A . (26)

The solution for tg can now be written as

v - bex '
& l-b7
Summing equation 24 over g and utilizing the definition of equation

9, we may write

kn

Wa - ZZW (m + 5.2, ) + Wbek - Wab® y = . (28)
gi
kn
Consider the term ZIw g(m + si 1g ) By interchanging the order of
gl
summetion and by inserting the values of 8y and m, given 1in equations

20 and 22, respectively, this term may be written as

k k

k
n k k n (zwigtg)[(zwingg)(zwig) - (zwigzig)el
‘I‘(mi Z"ig *8y gwigzig) = f [ X ¥ X >
(2w 2 1g)(m ) - (2w z0)
g g
nk
= Zow, b . (29)

ig
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rr Utilizing the definition of an origin given in equation 9, the term can be
further simplified to

z
i nk nk
g i .
,!3 fﬁwig(mi +532,) fﬁwists = Wa (30)

Now, equation 28 can be written as

o e g
=

Wooh = Wab%y

; from which

A= ay . (31)

g It should be noted in passing that equation 30, in terms of the v_ of

g
equation 25, indicates that the weighted mean of vg is
¥ n
ng Ewig
TmBE Lt .4 . (32) }
Z‘.Z.‘wiS ' ;
gl H

If the above value of A 1is substituted into equation 26 and

(1 - b27)a is subtracted from both sides of the equation, then equation

26 becomes

(-t -a)mv - (33)

n
Squaring both sides of equation 33, multiplying through by Zwig , and
i

summing over g , We may write

2 ok 2 B k o 0 L
1 -d7) 2(t_ - a) oy, = Z(v_ - a) v, . (3k4)
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Utilizing the definition of a scale unit in the form given in equation 12,

we may write equétion 34 as

k n
(1 - b°7)%W? = z(vg - a)? D , (35)
g i
from which
k n
v - a)2 Iw
2 g 1 18
(@ - %) - _ . (36)
Wb

Using the value of A found in equation 31, the solution for tg

given in equation 27 may be written as

Vv = ab27 vV =-a
g

t = = + 8 . (37)
B 1.1y 1 - by

Substituting the value of ( 1 - b27 ) from equation 36, the solution for

t  becomes
g

v_-a
o ve . ()
& k n
(v_ - a) zw
g 8 ; 18
Wb2

7 may also be represented in terms of the sum of squares of errors

as follows: Equation 8 may be written as

“[::}Eﬁ%gﬁ&ﬂdhm
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> nk o nk 5
b°E = zzwig(mi + 82, " tg) = Eﬂwig(mi + sizig)
ig ig
¥ n k s B
-2t Zw, (m, + 8,2, )+ Zt° Iw . (39)
g8 i1 e’ e gie
Consider the first term of the above expression:
nk o nk n Xk
ZZwig(mi + Sizig) = ZZ:wig(mi + sizig)(mi + Sizig) = Dn, Ewig(mi + sizig)
ig ig 17 e
n k
+ ?si Zwigzig(mi + sizig) (%0)
g
Substituting into the last term of equation 4O the values of 8y and m,
from equations 20 and 22, respectively, and simplifying; and remembering
k k
. that gwig(mi + Sizig) was found to be equal to Zwigtg in equation 29,
‘ we may rewrite equation 40 as
nk ( p 1 K n Xk kK n ( ) )
Sw, (m, +s8,2, )" =Im, Iw, t +Zs, Zw, t 2z, = It Iw, (m + 8,2 (1
ig 1g¥i i“ig 4 i g ig'g 1 i g ig g ig g g 4 ig'i i"ig
Equation 39 may now be written as
5 k n k o B
P E=-3t Iw, (m, +s,z, )+ Zt° Iw (42)
, g &1 18 i i'ig g &1 ig

Utilizing the definition of a scale unit from equation 10, equation 42 becomes

k n
b°E = w(a2 + be) - ztg o

g i

ig(mi + sizig) (43)

NI

e PN

.
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The size of the error term at the solution.may now be evaluated by

substituting for tg in equation 43 its value from equation 37, and by

n n
noting that i)wig(mi + sizig) =V fwis from equation 25. Equation 43
then becomes
2 2 .2 1 kpon k n k n
bPE=Wa" +b) ~ —=— [ Zvi Sv, -aiv_Zv, ]-alv_ZIv T (k)
1-vy g1 ig g 81 ig g &1 ig
[R] k n
In equation 32 it was seen that ng Ewig = Wa , 80 equation Lk may be
g°1
written as
k,n
b°E = Wa® + Wo© - —E— [ Zv° B, - WaZ ] - Wa? . (45)
1-vy g841'6
k p B 5 k o B
Rewriting [ Zv- Sw, - Wa"] as X(v_=- a)° Iw , and noting the value
g &1 ig g © 5 is

of this term in equation %5, we may write equation U5 as

b°E = W2 - (1 - boy)Wp> . (46)

The, error term may now be expressed as
2
E= Wby . (h7)

The Iterative Procedure

Since the t-scale of successive intervals is determined only with a

linear transformation, the origin, a , and the scale unit, b , may

be set at any values desired. The values most convenient for computational

K m——— A -
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routines are a =0 and b =1 With such a placement of origin and

unit, the restrictions given in equations 9 and 10 may be restated as

k n
It Zw, =0 and 48
Iy By (48)
k o B
Tt Iw, =W , respectively. (49)
g &1 18
The formula for category boundaries given in equation 38 may also be
rewritten in terms of this origin and unit as follows:
(50)

Now, equations 20, 22, 25, and 50 mey be used to set up an lterative

procedure to obtain convergence values for 8y » Wy and tg . If

some initial estimate, tgl , of the category boundaries, tg y were

available, equation 20 could be solved to obtain initial estimates, 849 9

of the discriminal dispersions, 8, - The initial t-estimates, t

gl ’
would, of course, have to be converted to meet the restrictions of equa-

tions 48 and 49.

In other words, if some set of k numbers, vgl s is available as

possible estimates of the category boundaries, before they are used in
the above solution, they must first be converted to meet the restrictions

of equations 48 and 49. This can be done as follows:
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Va "V

b = _j%?_.___ , where
V1

. 1% =
7. ==3v . Tw and
1 W g gl , ig

— =

1 = 2

o = |22(v, ~-v,) v : o)
v, W g 8 17 (g

Initial estimates of s, can then be obtained from equation 20 as

i
follows:

k k k k

(Ewigtglzig)(ZWig) - (Ewigzig)(zwigtgl)
s = £ g g £ . (52)
il k 5 k k o

- '’
(Bry o) (Bryg) - (Dry gz, )

If a subscript @ 1s introduced to indicate the oth cycle in the itera-

tive procedure, equation 52 can be rewritten as a formula for the Qath

estimate of s

i
k k k k
Pty -
( 1stsazis)(zwis) (zwiszig)(zwistsa )
s =& g g & : (53)
ia k > K iy o
(gwigzis)(?’ig) - (zwigzig)

In order to set up systematic computational routines, it would seem

desirable at this point to define the following coefficients:

=
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k
AT x K . (5%)
g g .
k
zwi zig
B, = }— T, (55)
(2w )(Zw ) (s )
g ig ig g ig ig
k
oW z2
igig
C; = k = k K N : (56)

Since the components of the above coefficients are obtainable directly
from the data, they are the same for all cycles of iteration and need
be computed only once for the entire procedure.

Equation 53 for the Qth estimate of the discriminal dispersions,

8y , may now be written as
k k :
s, =mA Iw, t 2z, -3B, Iw, t . P
B gt (57)

ia 1 g ig g0 ig i

Having found estimates for tg and 8y the 0oth estimate of the

scale values, m, , may now be obtained from equations 22, 55, and 56

1
as follows:
k k
= 8
m, =Cy iwigtga B, iwigtgazig (58)

N oy AR < -
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Now, new estimates of vg maey be obtalned from a formula analogous to

equation 25:

n n
f"’igmia + fwigsiazig
Valal) = o (59)
o™
i 18

A new estimate of the t-scale may now be found by using equation 50 as

follows:
v
- glo+l)
to(al) - (60)
n
i Ev2 w
W o glo+1) s ig

The above procedure may be repeated by inserting this value of

tg(awl) into equation 57 to obtain

used to obtain m

si(awl) » which in turn may be

1 (1) and, subsequently, tg(a+2) This cycle may

then be iterated until two successive estimates of t are as similar

as desired, i.e., until | tg(a+l) - tga] is negligible.

The amount of scaling error at any given cycle of iteration may be

evaluated from equation 43, with & set equal to zero and b to unity,

as follows:

k n
E, - W - Etga f"ig(mia + siazig) . (61)
The error should decrease as iteration proceeds untll at convergence
1 koD g i
E=Wy=W1- |=o ow, ) . (62)
Wbty ig
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The one step remaining to be considered before the above iterative
procedure may be applied in practice is the initiel estimation of the
t-scale. One obvious starting point might be a set of equally spaced
numbers, such as the integers from 1 to k , to which the conversion éf

equation 51 had been applied. By using such equally spaced t values,

gl
a set of "equal-appearing" intervals is used as the starting point for
iteration to successive intervals. It may be possible, also, to increase
the rate of convergence in the iterative procedure by doubling or tripling

the difference between successive t-estimates, i.e., instead of using

tg(a+l) on the (o + 1) trial, use balon1) = tgg + QEtE(Oﬁl) - tga]

A cycle or two, and in some casés perhaps several cycles, may be
eliminated from theviterative procedure by using a computationally simple
linear solution for 'tg as a first estimate. One o} the simplest methods
for estimating tg has been suggested by Gaerner and Hake (6) and by
Edwards (3) and involves averages of successive differences in zig
values. Such averages are estimates of (tg - tg-l) provided the dis-
criminal dispersions may be gssumed‘equal. Torgerson (21) also gives
a simple algebraic ratio solution for tg which does not require equal
s:.L . Any of these algebraic solutions may be used to obtain initial

estimates for the 1lterative procedure, but the labor involved might turn

out to be as great as that in the cycle or two eliminated.
Some Weighting Systems Appropriate for Successive Intervals Data

Some comment is necessary at this point concerning the weights, wig N

involved in the above least squares solution. It will be recalled that

the only restriction placed upon the choice of these weights was that
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P =0

wig = 0 and wigzig = 0 vwhen b1

If p equals neither zero nor one, the weights may be set at any values
desired, e.g., wig mey be set equal to unity for 0<p <1 .

However, as Urban (23) hds pointed out, it is a principle of the
method of least squares that more relisble observations should héve
greater importance than less reliable omnes, so it would seem reasonable
to choose the weights in such a way as to take account of differences

in the reliability of the 2z velues. Since the reliability of a pro-

ig
portion is inversely related to its variance, the weights used for such

& purpose would be proportional to gz . These welghts wodld also be
directly proportional to the information available from the obéervations,
since the reciprocal of the variance may be identified with quantity of
information (5).

Another point must also be considered in selecting weights for
successive intervals data. As reported by Guilford (8, p. 175), "Miller
argued that the proportions near .50 should be weighted more than the
proportions deviaeting in either direction from .50...an error in p
near .50, where p 18 changing at its maximum rate, as compared with
the change in ( 2 ), is not neerly so serious as at the extremes where a
slight error in p d1s reflected in a large error in ( z )" Miller, then,
was advocating.a system which would weight directly in proportion to the
rate of change of p with respect to 2z . These weighte turn out to

be the ordinates, X , of the normal distribution corresponding to

proportions, p ; a recent derivation of these weights is given by
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Finney (4). 1In practice both weighting conditions are usually combined
to produce the Miller-Urban welghts, %2 .

It can elso be shown that within an approximstion the Miller-Urban
welghts are the proper values for weighting normally transformed scores

inversely to their wvariance. Consider the following approximate relation-

ship stated by Kendall (11, p. 206):

var p = ‘(%5)2 var z , (63)

where var is an abbreviation for variance. If P and 2z are related
by the unit normal distribution function, as is the case for successive

intervals, %E is equal to X , the ordinate of the unit normal curve

corresponding to a proportion, P . Therefore,
2
var p = X var z or
var z = 295 . (64)
X

Thus, in.weighting inversely to the varlance of 2z , the weight would
be proportional to %Z » 8ince N 1is a constant in the successive
intervals situations.

However, it i1s possible to use a simpler set of weights than
xe/pq » without sacrificing completely the differentiation between
reliable and unreliable z18 values. For instance, one possible rule
for weighting would be to assign zero if the corresponding proportion
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contained less than some specified fraction, % , of the maximum possible

information (corresponding to p = .5 ) and unity if it contained more than

% th the maximm information. Or, all ijzig‘ >c could be weighted zero,

and all lz <ec
igf —

could be weighted unity; such a rule with a value of

¢ = 2 has been found to be convenient in practice (7, 8).
The use of & simple set of unit and zero weights also simplifies some

of the procedures involved in the above iterative solution. For instance,

if

0 for Izigl >c

w =
ig ’

1 for Izig‘ <ec
or alternatively stated, if

0 for Fig < cl or Fig > c2

1 for c:L SFig Scz

the weights can be applied simultaneously with the conversion to zig

¢ SFg S ¢

With this kind

)

L] L] <
i.e., Fig ¢, or Fig > ¢, can be converted to zero, while
are converted to the corresponding normal deviates, zig .
of procedure, the deviate values available for manipulation have already

had the weights applied; this would greatly simplify subsequent computations.
Sumary and Illustration of Analytical Procedures

The analytical procedures involved in the above least squares solu-
tion for successive intervals will now be summarized, and an errorless

numerical example will be used to illustrate the computational routine.
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The experimental method of successive intervals ylelds the
category (l to k+1) into which each of n  stimuli was
placed by each of N individuals. These data may be sum-
marized into.an n X(k+1) table, the cell entries of which,

ig
placed in the gth category. By cumulating the frequencies

f , represent the number of times the ith stimulus was

in each row of this teble so that each entry now represents
the number of timeé the 1th stimulus appeared below the

gth category boundary, tg , & set of cumulated frequencies,
Fig , 1s obtained, which can be considered to be the start-

ing point for successive intervals aﬁalysis.

. The cumulated frequencies are then converted into proportions,

Pig » and then to normal deviate values, zig . For the

purpose of illustrating computational procedures, consider

the set of zig values presented in Table 1. The four scale
values, mo, four discriminal dispersions, 8y s and three
category boundaries, tg , which exactly fit these zig values

under the restrictions of equations 48 and 49 are also given in
Table 1. Knowing a "true" set of scale values and category
boundaries, the convergence of the above iterative solution
may be 1llustrated.

A set of welghts, w , &nd an initial estimate, ¢t , of

ig gl
the category boundaries must now be determined..’ For-the .présent
example, it was decided to use the welghts given in Table 1;

they were assigned so that

-,

[t
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>
Jﬁo for lzigl 3.0

wig = 1l for 3.02 \zigi *2.0
2 for ‘z ‘<2.o .
1g

It was also decided to use an equally-spaced scale as a
first estimate of tg. . Accordingly, using the inteéers 1,
2, and 3 as ﬁél » the conversion of equation 51 produced as
tgl the values -1.16422, .15523, 1.47469, It should be noted
that if the "true" tg values given in Table 1 were used as
first estimates in the present iterative procedure, they would
be exactly reprdduced at the end of one cycle.

Now, the coefficients Ai s B, , and Ci may be computed

i
according to equations 5&, 55, and 56, respectively; these

values are preserited in Table 2, along with the values of

k k
zwigtgl and éwigtglzig .

Sufficient information is now available to solve for first

estimates of the discriminal dispersions, Sil » using
equation 57 (see Table 2).
Now, first estimates of .the scale values, mil , can be

obtained, using equation 58 (see Table 2).
New estimates, tgz , of the category boundaries may now
be found from equations 59 and 60. It will be noted that

th given in Table 2 is closer to the "true" t-scale than

t was.
gl k
In order to iterate this solution, new values of zwigtga
k g
and Zw, t must be computed. Using these values,

z
ig ge”i
g g B< 1ig
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equations 57 and 58, respectively, may be solved to obtain
s12 and My, - Then, equations 59 and 60 may be used to
obtain tg} s the third estimate of the t-scale (see Table
3). It should again be noted that the estimates of +_ at
each successive cycle are approaching closer and closer the
“true" tg scale. This procedure may now be repeated until

two successive t-estimates are as similar as desired,

A Graphical Successive Intervals Scaling Procedure

It was seen from equation 21 that Si is the regression coefficient

for the regression of t on =z

. This suggests a graphical solution

to successive intervals, which will be summarized below; the procedures

to be presented bear some similarity to the graphical methods of Mosier

(12) and Garner and Hake (6).

1-3.

Steps 1 through 3 of the graphical procedure are identical to
the corresponding steps of the above analytical procedure. In
order to utilize the graphical method, a first estimate, tgl s
of the category boundaries must be available, along with normal
deviate values and their corresponding weights.

The estimated tgl values are then marked off as the ordinate
of a graph with 2z values used as the abscissd. The tgl
values are horizontal lines that hold for all stimuli, so
several plots can be made on one graph (see Figure 1). For

each stimulus, the zig values are plotted at the appropriate

tgl points, i.e., for stimulus 2 in the above numerical

example, points would be plotted at ( tgl =-1.164 , z=-.5),
(tgl=.155, z=.5 ), and(tgl=l‘h75, z =2.0), as

illustrated in Figure 1. Weights can be applied in the graphical

-~
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procedure by clustering around each point a number of dots pro-
portional to the corresponding weight. A straight line can now
be fitted to the points by eye, giving more emphasis to those
points with bigger dot clusters in determining the slope of the
line.

The equation of each of these lines can be written as

Vo1 T W1t 841%4g

or, more generally, as

tea = Big T il (65)

The slope, s » of each line is the ol estimate of the

ix

discriminal dispersion, and the intercept, s when z =0

Mo
is the ath estimate of the scale value. These intercepts and
slopes can be read dlrectly from the graph, but they need not be
recorded until the final iteration.

In practice, the straight lines fitted to the plotted values

willl rarely cross every point; each point will usually deviate
from the line by some amount, the amount of this deviation in

the vertical direction representing a scaling error (see Figure 1).
The vertical projection of a plotted point on the fitted line
produces another point, '@;g , which, since it lies directly on
the line, represents a theoretlcal or fitted estimate of tg

(see Figure l). For a given category boundary, there are n
fitted estimates {;ig , one for each stimulus. If the ordinates

of these %;g' values are recorded, weighted averages of the

oy
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ordinates can be used to obtain a new estimate of tg as follows:
n "
w, t
x
1 B ; (66)
n gla+l)
Iw
118
% - Yglar1) T V(o) (67)
glo+1) 9, ’
‘ (a+1)
where
- 1 k n
larl) ° W : Ve(a+l) fwig
and
k n
o =iz v -5 v
var) T\ TE [Velon) T V(@1)] g
The only value, then, that need be read from the graphs in
going from one iterative cycle to another is giga . The slopes
and intercepts corresponding to discriminal dispersions and
scale values do not need to be recorded until the final iteration.
T. This new estimate of tg may now be plotted as the ordinate of

a graph with 2z wvalues marked off as the abscissa. The cycle
may then be repeated beginning at step 4 until two successive

t-estimates are as similar as desired.

—

Summary

A general least squares solution is developed for the method of
successive intervals when weights are assigned to each error term.

These weights may reflect the relative amount of information contained
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in the corresponding observations. By use of zero weights, this method
is rigorously applicable to matrlces involving incomplete data. An

iterative computational procedure is presented.
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B TABLE 1

i “

; Date for an Erforless Numerical Example, along with

i "Prue" Scale Values and Category Boundaries

B

o

;

[

‘ .. i Z “ w m | 8 t

| ig ig 1 i g

! St imu-~ " Category

| lus 1 2 3 —

] 1 0.0 2.0 5.d 2 1 o[ -1.06458 | .53229 | t = -1.06k58
h ' 1 1 :

N 2 -0.5 0.5 2.0 2 2 1 -.53229-{ 1.06L458 . ty = 0

i

;} 3 2.0 0.0 301 2 1 0 Jo 53229 | t5 = 1.59687
{ { : |

‘ L 2.0 «1.0 0.5 1 2 2 1.06458 § 1.06L458 .
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3
i

Second Iteration in the Numerical Example

{
; :

1"‘ ',s;izu; gwigth zwigtgzzig” 5.0 o | by

i

: ?v ¢l ; -2.1&1585 .06720 56060 | -1.08759 i tyg = -1.06948
% ’ 2 | -.53516 | L 26683 ;1.06688 bo-.53362 tos = 00730
. 3 55243 | 6.89364 | .52963 (00570 | tax = 1.59193

L "2.12525 3.68080 | 1.05467 1.05788
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